

Introduction: Hydraulic Fluid Management by Kleentek: Electrostatic Oil Cleaner (SP Series)

Focus Machinery Pte Ltd, Singapore x Kleentek Corporation, Japan

How we operate and works

	Step 1	Step 2	Step 3	Step 4
Client, (You)	 initial contact expression of interest initial discussion 	 benchmarking of oil performance (using Kleentek Oil Analysis report) benchmarking of oil performance using independent laboratory 	 taking delivery of Kleentek's Oil Cleaner preparation of materials and resources 	 taking delivery of oil cleaner implementation of oil management control perform oil top-up and replenishment based on Kleentek's recommendation
Focus Machinery Pte Ltd, Singapore	 understanding of technical background, application collection of oil samples, (used/new) membrane patch testing, internal 	 negotiation of pricing and payment term drafting of technical solution based on client's environment placement of order with the maker 	 commissioning, installation of system boardroom presentation, on-site training 	 performance measurement regular interval oil performance measurement yearly onsite visit with customer,
Kleentek Corp Inc., Japan	 maker informed of the client, enquiry processing of oil samples oil analysis report 	 maker produce the Kleentek machine with accordance to technical requirement tentative lead time: approxi. 3 months 	 oil samples are sent back to Kleentek Corp Inc., Japan for oil analysis provide recommendation based on the oil analysis 	 feedback on the performance of client's environment provide recommendation and feedback on client's environment

Application of Kleentek: Electrostatic Oil Cleaner

Type of Lubricant/Oil	Specific Application
Hydraulic Oil VG22 ~ 68	Hydraulic Press; Casting Machine; Forging Machine; Injection Molding; Steel Mill/Paper Mill; Gauge Control System (Steel, Aluminums, Paper); Governor Control (Power Plant); Machining Centers; Test Stand Simulator
Lubricant VG68 ~ 200	Mechanical Press Machine; Gas & Steam Turbines (Power Plants); Paper dryer bearing; vacuum pumps;
Turbine Oil	Power Plants
<u>Summary:</u> Application Oil Viscosity Temperature	: Mineral based oil with the exception of engine oil : below 200mm ² /s : below 60°C

To promote <u>sustainable practice</u> through the <u>reduced use of non-renewable</u> natural resource by refocusing the use refined mineral oil while ensuring <u>maximum uptime</u>; reduce cost of maintenance and <u>minimizing operational impact</u>.

Operating Principle of EOC

EOC has the ability to eliminates any kinds and sizes of contaminants including sub-micron contaminants

Combined both the principle of electrophoresis & dielectrophoresis

Patented designed collectors materials that deforms the electrical field and neutral contaminants are attracted to the strongest field region (Dielectrophoresis)

Operating Principle of EOC

Contaminants within the oil are charged using the electrode. The charged particles will move towards the electrode having opposite polarity.

EOC has the ability to eliminates any kinds and sizes of contaminants including sub-micron contaminants

Combined both the principle of electrophoresis & dielectrophoresis

Patented designed collectors materials that deforms the electrical field and neutral contaminants are attracted to the strongest field region (Dielectrophoresis)

Operating Principle of EOC

Contaminants within the oil are charged using the electrode. The charged particles will move towards the electrode having opposite polarity.

EOC has the ability to eliminates any kinds and sizes of contaminants including sub-micron contaminants

Combined both the principle of electrophoresis & dielectrophoresis

Patented designed collectors materials that deforms the electrical field and neutral contaminants are attracted to the strongest field region (Dielectrophoresis)

Operating Principle of EOC

Contaminants within the oil are charged using the electrode. The charged particles will move towards the electrode having opposite polarity.

EOC has the ability to eliminates any kinds and contaminants including sizes of sub-micron contaminants

Combined both the principle of electrophoresis & dielectrophoresis

Patented designed collectors materials that deforms the electrical field and neutral contaminants are attracted the strongest field to region (Dielectrophoresis)

Operating Principle of EOC

Contaminants within the oil are charged using the electrode. The charged particles will move towards the electrode having opposite polarity.

EOC has the ability to eliminates any kinds and sizes of contaminants including sub-micron contaminants

Combined both the principle of electrophoresis & dielectrophoresis

Patented designed collectors materials that deforms the electrical field and neutral contaminants are attracted to the strongest field region (Dielectrophoresis)

Operating Principle of EOC

EOC has the ability to eliminates any kinds and sizes of contaminants including sub-micron contaminants

Combined both the principle of electrophoresis & dielectrophoresis

Patented designed collectors materials that deforms the electrical field and neutral contaminants are attracted to the strongest field region (Dielectrophoresis)

Operating Principle of EOC

Contaminants within the oil are charged using the electrode. The charged particles will move towards the electrode having opposite polarity.

EOC has the ability to eliminates any kinds and sizes of contaminants including sub-micron contaminants

Combined both the principle of electrophoresis & dielectrophoresis

Patented designed collectors materials that deforms the electrical field and neutral contaminants are attracted to the strongest field region (Dielectrophoresis)

Operating Principle of EOC

Contaminants within the oil are charged using the electrode. The charged particles will move towards the electrode having opposite polarity.

EOC has the ability to eliminates any kinds and sizes of contaminants including sub-micron contaminants

Combined both the principle of electrophoresis & dielectrophoresis

Patented designed collectors materials that deforms the electrical field and neutral contaminants are attracted to the strongest field region (Dielectrophoresis)

Honeycomb Structure

Operating Principle of EOC

Contaminants within the oil are charged using the electrode. The charged particles will move towards the electrode having opposite polarity.

EOC has the ability to eliminates any kinds and sizes of contaminants including sub-micron contaminants

Combined both the principle of electrophoresis & dielectrophoresis

Patented designed collectors materials that deforms the electrical field and neutral contaminants are attracted to the strongest field region (Dielectrophoresis)

5. Implementing and Operating EOC

Implementing, Operating and Running your EOC

Simple, quick and straightforward Implementation and Installation

No modification to your existing machine/system is required

Promote Active-Active ("online")/Active-Passive ("off-line") setup, no downtime is required for mission-critical application

Just connect the power supply, one inlet and return hose to and from your Kleentek, Electrostatic Oil Cleaner, and your system will be up and running in no time

Implementing and Operating EOC

Change of Kleentek: Cartridge Collector

Cartridge Collectors are replaced every 2,000 hours

Necessary to ensure maximum cleaning efficiency

Procedure requires only 30 minutes

Primary machine is not require to shutdown

Comparison between using an EOC vs Conventional in-line Filter

Using a Traditional and Conventional in-line Filter

Replace line-filter when clogging occurs

Change of oil when hydraulic failures occurs

Change of oil when oil providers recommends a oil change

(without system flushing)

Oil change continue to be part of the requirement of the preventive maintenance schedule with accordance to majority of the manufacturer – environmentally not sustainable

Remove up to micro-level particles (6µm) sized particles only. This is equivalent of particle sized up fine iron oxide

Using a Kleentek: Electrostatic Oil Cleaner

Removal of sub-micron particles and oil oxidation products that accounts for 70% of the contaminations that take place in a hydraulic system

Removal of oil oxidation product from the surface of the internal component without removal of complex components

No oil change is would be required

Note: small quantity of oil (5% to 10%) top-up would be required in order to replenish the drop in level of oil additive and due to depletion of oil samples for testing

Ability to remove up to sub-micro level particles $(0.03\mu m)$ sized particles. This is equivalent of up to carbon sized particles at a microscopic level.

Advantage of Using Electrostatic Oil Cleaner ("EOC")

Measures	Details
Productivity	 reduce machine downtime reduce the no. of defective parts produce ensure consistent and high-quality of manufactured parts
Environment	 extend life of lubricating fluid/oil used encourage energy saving reduce oil leakage – from components and oil seals
Cost Reduction	 reduce freq. and vol. of oil purchases, disposing of expenses reduce cost of maintenances of equipment reduce and eliminate the occurrence of servo value failure and pump failure
Sustainability	 reduce the use of non-renewable natural resources refocus of refined minerals oil/lubricant promote the use of sustainable practices

HIGH CHANGE COLLECTOR

11111

Case Study – Tokyo Motomotive Co., Ltd, Japan			
Customer, Region:	Tokyo Motormotives Co., Ltd Tokyo Shinangawa		
Department:	Engineering and Production Fa Maintenance Department	cilities	
Equipment:	Hydraulic Press Machine Qty: Vol. of Oil Tank:	5 units 4,000 litres	
Operating Parameters:	Operating Temp: Lubri. Brand & Grade:	45ºC Shell Tellus, VG46	
Current Practice:	Oil Change Cycle: Line Filter Replacement:	once every 2 years once every year	
Challenges:	Hydraulic Failures Value Replacement: Pump Malfunction: Copyright 2024 © Focus Machin	once every 3 years once every 2 years ery Pte Ltd. All Rights Reserved.	

Case Study – Tokyo Motomotive Co., Ltd, Japan – Cost Benefits Analysis

Item	Description of Content	w/o Kleentek Implementation (USD)	with Kleentek Implementation (USD)	Cost saving (Dollars/year) (USD)
servo valve replacement	average 3 times a year (@USD 6,250/year)	18,750	0	18,750
cost of oil replacement	$\frac{7,000 \ litres}{3 \ years}$ = 2,333 litres/year 2,333 litres × USD 4.00 = USD 9,333	9,333	0	9,333
cost of collector per year	replacement of collector twice per year @ USD 820 per collector	0	1,640	-1,640
oil addition (recommended)	5% of tank capacity of 7,000 litres (7,000 litres x 5% = 350 litres) (350 litres x USD4.00 = USD1,400.00)	0	1,400	-1,400
energy saving	reduce 5% of power consumption of hydraulic pump motor 417kW (150kW x 2 machine x 95 x 22kW (417kW X 46% X 18h X 22 days X 12 months X 5% X USD013USD/kWh)	118,500	112,580	5,920
	Total Saving	146,580	115,620	30,960

Item	Description of Content	w/o Kleentek Implementation (USD)	with Kleentek Implementation (USD)	Cost saving (Dollars/year) (USD)
servo valve replacement	average 3 times a year (@USD 6,250/year)	18,750	0	18,750
cost of oil replacement	7,000 litres 3 years 2,333 litres × USD 4.00 = USD 9,333	9,333	0	<i>9,</i> 333
cost of collector per year	replacement of collector twice per year @ USD 820 per collector	0	1,640	-1,640
oil addition (recommended)	5% of tank capacity of 7,000 litres (7,000 litres x 5% = 350 litres) (350 litres x USD4.00 = USD1,400.00)	0	1,400	-1,400
energy saving	reduce 5% of power consumption of hydraulic pump motor 417kW (150kW x 2 machine x 95 x 22kW (417kW X 46% X 18h X 22 days X 12 months X 5% X USD013USD/kWh)	118,500	112,580	5,920
	Total Saving	146,580	115,620	30,960

Case Study – Tokyo Motomotive Co., Ltd, Japan – Cost Benefits Analysis

Item	Description of Content	w/o Kleentek Implementation (USD)	with Kleentek Implementation (USD)	Cost saving (Dollars/year) (USD)
servo valve replacement	average 3 times a year (@USD 6,250/year)	18,750	0	18,750
cost of oil replacement	7,000 litres 3 years 2,333 litres × USD 4.00 = USD 9,333	9,333	0	9,333
cost of collector per year	replacement of collector twice per year @ USD 820 per collector	0	1,640	-1,640
oil addition (recommended)	5% of tank capacity of 7,000 litres (7,000 litres x 5% = 350 litres) (350 litres x USD4.00 = USD1,400.00)	0	1,400	-1,400
energy saving	reduce 5% of power consumption of hydraulic pump motor 417kW (150kW x 2 machine x 95 x 22kW (417kW X 46% X 18h X 22 days X 12 months X 5% X USD013USD/kWh)	118,500	112,580	5,920
	Total Saving	146,580	115,620	30,960

Case Study – Tokyo Motomotive Co., Ltd, Japan – Cost Benefits Analysis

Case Study – Tokyo Motomotive Co., Ltd, Japan (cont.)

«KLEENTEK

Tel : +81 3 3740 4141

Fax : +81 3 3740 4966

Shinagawa-ku, Tokyo, 140-0011 JAPAN Before

Sample Oil

For more information, you may reach us at:

<u>sales@focusmachinery.com.sg</u> enquiry@focusmachinery.com.sg

VISIT US ONLINE